Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yan Zhang, Gui-Long Zhao, Xi-Zhao Wang, Jiong Jia and Jian-Wu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.006 Å R factor = 0.043 wR factor = 0.105 Data-to-parameter ratio = 7.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranoside

The six-membered sugar ring of the title compound, $C_{21}H_{26}O_{11}$, adopts a chair conformation. The crystal structure is stabilized by intermolecular $C-H \cdot \cdot \cdot O$ hydrogen bonds and van der Waals forces.

Received 24 April 2006 Accepted 22 May 2006

Comment

4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranoside, (I), is an important intermediate in the synthesis of oligosaccharides (Chen *et al.*, 2002; Polat & Linhardt, 2003). Its crystal structure is reported here.

The absolute configuration of the title compound was assigned from a knowledge of the stereochemistry of its synthetic precursor. Bond lengths of the ring are normal (Table 1) and comparable with those in published structures (Abboud *et al.*, 1997; Temeriusz *et al.*, 2005). The ring adopts a ${}^{3}C_{5}$ chair conformation, with atoms C3 and O1 at distances of 0.55 (4) and 0.70 (4)Å, respectively, on opposite sides of the C1/C2/C4/C5 plane. It can be seen that the C–H of the ring and C=O bonds point in the same direction and are approximately coplanar.

The crystal structure is stabilized by intermolecular C– $H \cdots O$ hydrogen bonds and van der Waals forces (Table 2).

Experimental

A mixture of tetra-O-acetyl- α -D-galactopyranosyl bromide (5 mmol) in chloroform (10 ml) and the sodium salt of 4-methoxyphenol (5 mmol) in water was stirred overnight. The organic layer was then separated, washed with water, and dried with anhydrous sodium sulfate. Evaporation on a rotary evaporator gave a residue, which was recrystallized from absolute ethanol to afford the pure title compound as colourless prisms (85%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature.

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $C_{21}H_{26}O_{11}$ $M_r = 454.42$ Monoclinic, $P2_1$ a = 11.935 (3) Å b = 5.7061 (14) Å c = 17.873 (4) Å $\beta = 108.884$ (3)° V = 1151.7 (5) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.959, T_{\max} = 0.995$

Refinement

Refinement on F^2	$w = 1/[\sigma^2 (F_o^2)]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	+ 0.1697
$wR(F^2) = 0.105$	where $P =$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0$
2261 reflections	$\Delta \rho_{\rm max} = 0.14$
292 parameters	$\Delta \rho_{\rm min} = -0.1$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.412 (4)	O8-C13	1.346 (5)
O1-C5	1.431 (4)	O8-C2	1.434 (4)
O2-C7	1.335 (5)	O9-C13	1.181 (5)
O2-C6	1.441 (4)	O10-C1	1.391 (4)
O3-C7	1.193 (5)	O10-C15	1.391 (4)
O4-C9	1.357 (4)	O11-C18	1.375 (5)
O4-C4	1.440 (4)	O11-C21	1.402 (7)
O5-C9	1.175 (5)	C1-C2	1.514 (5)
O6-C11	1.342 (5)	C2-C3	1.517 (5)
O6-C3	1.442 (4)	C3-C4	1.523 (5)
O7-C11	1.206 (6)	C4-C5	1.526 (5)
C1-O1-C5	111.0 (2)	C13-O8-C2	118.9 (3)
C7-O2-C6	116.6 (3)	C1-O10-C15	118.4 (3)
C9-O4-C4	116.9 (3)	C18-O11-C21	118.6 (4)
C11-O6-C3	118.0 (3)		
C5-O1-C1-C2	65.8 (4)	C11-O6-C3-C4	-71.6(4)
C13-O8-C2-C1	-117.8(3)	C9-O4-C4-C3	136.8 (3)
C13-O8-C2-C3	120.6 (3)	C9-O4-C4-C5	-103.8(4)
C11-O6-C3-C2	165.0 (3)		

Z = 2

 $D_x = 1.310 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 25.0^\circ$

Plate, colourless

 $0.40 \times 0.18 \times 0.05 \ \text{mm}$

6093 measured reflections

2261 independent reflections

1837 reflections with $I > 2\sigma(I)$

.001

4 e Å

 $+ (0.0463P)^{2}$ $F_{0}^{2} + 2F_{c}^{2})/3$

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2A\cdots O9$	0.98	2.29	2.713 (5)	105
$C4-H4A\cdots O5$	0.98	2.27	2.664 (4)	103
$C4-H4A\cdots O7$	0.98	2.58	3.044 (5)	109
C6−H6B···O3	0.97	2.29	2.666 (5)	102
C16-H16A···O1	0.93	2.48	2.987 (4)	115
$C3-H3A\cdots O9^{i}$	0.98	2.52	3.364 (5)	145
C10−H10A···O7 ⁱⁱ	0.96	2.59	3.479 (5)	154
C10−H10C···O3 ⁱⁱⁱ	0.96	2.54	3.370 (5)	145
$C21 - H21C \cdot \cdot \cdot O7^{iv}$	0.96	2.47	3.356 (6)	153

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) x, y + 1, z; (iv) x + 1, y, z.

Figure 1

A view of compound (I), with displacement ellipsoids drawn at the 40% probability level.

Figure 2

A	packing	diagram,	viewed	down	the a	axis.	Hydrogen	bonds	are	shown
as	dashed	lines.								

All H atoms were placed in calculated positions, with C–H = 0.93–0.98Å, and included in the final cycles of refinement using a riding model, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl}\ {\rm C})$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the absolute configuration was assumed from the synthesis.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXTL* (Bruker, 1999); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Abboud, K. A., Toporek, S. S. & Horenstein, B. A. (1997). Acta Cryst. C53, 118–120.

- Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). *SAINT* (Version 6.36a) and *SHELXTL* (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L. Q., Zhu, Y. L. & Kong, F. Z. (2002). *Carbohydr. Res.* **337**, 383–390. Polat, T. & Linhardt, R. J. (2003). *Carbohydr. Res.* **338**, 447–449.
- Sheldrick, G. M. (1996). SADABS. Version 2.0. University of Göttingen, Germany.
- Temeriusz, A., Gubica, T., Rogowska, P., Paradowska, K. & Cyranski, M. K. (2005). Carbohydr. Res. 340, 1175–1184.